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Abstract. 

BIT has played and plays a great role in the development of concepts concerning numerical 
(in)stability in initial value problems for ODE's and related questions. This development is here 
seen through the looking-glass of the author, who experienced much of its pains and pleasures. 
The article is based on a talk given in 1981 at the Zfirich symposium to commemorate the tenth 
anniversary of the death of the eminent Swiss numerical analyst, Heinz Rutishauser. The 
presentation is mainly chronological with a few digressions. Part I ends at the beginning of the 
stiff epoch. 
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1. Freilmrg im Breisgau, April 1951. 

One day in the beginning of  195t my employer,  the Swedish Board for 
Comput ing  Machinery  capitulated to my requests to go to the G A M M  meeting 

at Freiburg im Breisgau. So I went there with a ten-minute talk [8]  in my 

baggage. I had just found the way to my r o o m  in a small Freiburg hotel, when 

the telephone rang, and I was told that  a gentleman wanted so see me. Very 
strange! Fifteen minutes earlier I did not know the address myself, and I knew 

no other participants at this conference. 
A serious man, a few years older than me, waited for me at the reception. 

He introduced himself as Heinz Rutishauser. He had read my abstract  and feared 
that we had made the same discovery. I rehearsed my talk for him, which 

contained an example of  some analysis I had  done  in order  to choose a numerical 

method for some missile calculations on a relay computer  in Stockholm, because 
I had had (justified) fears that the task might take a considerable time on that  

computer.  
I reproduce below the essentials of my talk. 

"This particular analysis is concerned with the application of  the leapfrog 

method,  

(H) Y.+t = Y . - I  + 2 h f ( y . ,  t . )  
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for the system, 

(1.2) 
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d y / d t  = f ( y ,  t),  y(O)  = c. 
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The local truncation error per unit of time is, 

(1.3) p( t )  ~ h2"f /6.  

I show, by a somewhat heuristic (though not very sloppy) argument, loc. cit., 
that the error may be decomposed according to the formula, 

(1.4) y ( t , )  - Yn "~ u ( t , )  + av(t,) + b( - 1 )~w(t .) ,  

where u, v, w are solutions of the differential equations, 

(l.5a) du /d t  = J ( t ) u + p ( t ) ,  u(O) = O, 

(1.5b) d v / d t  = J ( t ) v ,  

(1.5c) d w / d t  = - d ( t )w ,  

where J ( t )  = Of /Oy  is the Jacobian evaluated at (t, y ( t ) ) ,  and a and b are deter- 
mined by the two initial conditions needed for the difference equation (1.1). For 
example, if f ( t ,  y )  = - y ,  we obtain for t = t. (with error-free initial data), 

exp( t ) -  y ,  ~ - (h2 /6 )yo ( t  exp( - t) + ( - 1)"(h/2)exp(t)). 

It is pointed out that the oscillating term grows exponentially and might 
become the largest term: for h =0.1 this happens for t > 2. It is also 
emphasized that the oscillatory component is due to the fact that the difference 
equation is of higher order than the differential equation. 

For other (two-step) methods studied nothing is changed in (1.5a), (1.5b), 
except for the expression for the local truncation error, but (1.5c) reads, 

d w / d t  = c J ( t ) w ,  

where c is a constant characteristic for the method (later called a growth 
parameter). For example, if a predicted value for Y.+I is iteratively improved 
until convergence by the use of (the fourth order accurate) Simpson's formula, 

Y , + I  - Y . + I  = ( h / 3 ) ( f ( y n + ~ ) + 4 f ( y . ) + f ( y . _  ~)), (i = 1, 2, 3 . . . .  ) 

(which is called Milne-Simpson's method below) then c . . . . .  " 
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At this point, I had to turn the page, but before I had done so, Rutishauser 
filled in: c = -1 /3 .  No doubt, we had made the same "discovery"! He told he 
had submitted a paper to a journal but had troubles with the refereeing process. 
Unfortunately this was 9 years before the birth of BIT. Carl-Erik Fr6berg had 
only just conceived it. 

Eventually Rutishauser submitted his manuscript to a new Swiss journal 
instead, where it appeared in t952, [33]. His paper differs from mine in many 
respects. He obtains results for several methods and points out that when 
Ilhdf/dyll is small enough, no growing oscillations will occur with the Runge- 
Kutta methods (which are one-step methods) and the Adams methods. He does 
not derive equations like (1.5c) but considers "frozen Jacobians", i.e. for every 
time z, he considers the behavior for t > z of the numerical scheme on a linear 
system with a constant matrix, equal to the Jacobian evaluated at the point 
(~, y(~)). 

In the last sentence of my paper, I expressed my intention to publish the 
derivations and results more completely. The Zentralblatt reviewer remarked to 
this that he desired I Would then mention the possibility of a rigorous error 
analysis along these lines. It took me some time to live up to that expectation 
(1958). I wanted to discuss these matters in the framework of a general theory 
for linear multistep methods. It was natural to treat some other aspects of that 
theory first ("zero-stability", see below), and in the general formulation it was 
not easy to obtain full rigor. The delay was also caused by my involvement in 
many other tasks at the Swedish Board for Computing Machinery and the 
International Meteorological Institute in Stockholm. 

The next to last sentence of my paper surprises me, when I read it again. 
"When Simpson's rule isused only once in each step, c depends on the predictor 
used". I never returned to this aspect, but Stetter [34] found a remarkable 
combination, where one can avoid the growing oscillations, at least for linear 
autonomous systems with real and negative eigenvalues. 

2. The state of the art around 1951. 

The phenomenon of increasing oscillations, which have nothing to do with 
the exact solution of the ODE system, later became known as weak (numerical) 
instability [12] o r  weak stability [19] or (to-day) weak zero-stability. 
Rutishauser used the word "instability", while I did not, in my 1951 paper. 

I have never seen the term "numerical stability" in the pre-computer literature 
on numerical methods. People who did numerical work before the computer age 

often had a considerable craftmanship. I remember more than one of them 
uttering words like : "You will notice a lot of things when you put digits into the 
scheme that you d i d  not expect, when you read the derivation of it". 
Phenomena of the kind discussed above were probably known to many of them, 
but they rarely wrote about them. 
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One exception is a paper in 1942 by Collatz and Zurmfihl [4], see also 
Coltatz [3], p, 86. Like Rutishauser and me, they consider two-step methods 
and mention "Aufrauhungserscheinung und Glfittung', i.e. the results may 
become rough. This is first noticed in the third differences. There is not so much 
analysis of the phenomenon, but they suggest a smoothing procedure. When to 
apply it, and also partly how to apply it, is left to the judgement of the human 
computer. 

An algorithmic version of related ideas was published in 1959 by Milne and 
Reynolds [29]. It seems likely that at that time similar devices existed in other 
programs. A new craftmanship had been created. Much wisdom was, and still 
is, buried in computer codes, in particular if they are written in low level 
languages. 

Nevertheless, in the computer age there is undoubtedly much more open 
scientific discussion of aspects of computing, which were earlier, on a much 
smaller scale, considered as craftmanship. With the autor~atic computer one 
began to look at computing as a "process", a word used by Turing 1948 in an 
important paper on matrix computations [38]. Words like "noise" for rounding 
errors, numerical (in)stability and condition numbers belong to this new point 
of view, even though Turing did not use the word "stability". It is not so much 
the increase of the number of arithmetic operations that matters, but the 
disappearance of the human inspection of almost every arithmetic result, based 
on criteria, which were successively developed during the course of the work 
and partly forgotten when the work was finished. 

Who invented the term "numerical instability" and when ? I conjecture that it 
was first heard about in 1946, in the groups around yon Neumann or Turing. I 
invite the reader to give counter-examples to this and other statements of this 
paper. I have tried but not succeeded entirely to get my beliefs comqrmed. 
Wilkinson has confirmed that he used it several times in conversations with 
Turing about that time. Turing had remarked that Wilkinson seemed to mean 
different things every time he used that word. The Turing-Wilkinson 
conversation illuminates two things. First, there are indeed plenty of distinctions 
to be made. The most fundamental is the distinction between instability in the 
underlying mathematical problem and instability in an algorithm for the (exact 
or approximate) treatment of the problem. Second, we need both a-more  
imprecise usage of the word and well-defined concepts for gaining more insight, 
in the form of theorems or otherwise. To-day, in connection with the numerical 
treatment of ODE's we use prefixes to stability from a large subset of the 
alphabet, from A to A, to cover different situations. (In the Scandinavian alphabet 
A comes near the end.) 

To my knowledge von Neumann first wrote about numerical stability in 1947 
in his great work with Goldstine on rounding errors in matrix inversion [40]. 
The authors seem to hesitate about the use of the word "stability". For example, 
in Chapter 1, on p. 1027 they write " . . .  the continuity of the result as a function 
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of the parameters of the problem, or somewhat more loosely worded, of the 
mathematical stability of the problem". Then the expression "continuity or 
stability" is used a few times until on p. 1028 they use "stability" without a 
companion a couple of times. In the following chapters the word is not used. 

Von Neumann's ideas on these things are exposed more explicitly in two 
papers published by him in 1950 with different coauthors, one on numerical 
weather prediction [1] and the other on hydrodynamical shocks [41]. There are 
also early papers by other authors, which are in part based on his ideas and 
Fourier technique, e.g. Crank and Nicolson 1947 [6], Eddy 1949 [15] and 
O'Brien, Hyman and Kaplan 1951 [30]. All these papers are concerned with 
finite difference methods for partial differential equations (PDE's). 

However, almost 20 years before all this, Courant, Friedrichs and Lewy 
published a now classical paper [5], where they study a few cases, when a 
partial difference equation (PAE) converges formally to a PDE. In modern 
terminology the PAE is consistent with a PDE. Among other things they 
studied a Cauchy problem for the PAE, which is obtained, when the derivatives 
in the second order hyperbolic equation 

(2.1) t~2U/t~t 2 = C2~21A/~X 2 

are replaced by central difference quotients. They pointed out that in order that 
the solutions of the PAE problem should converge to the solutions of the 
corresponding PDE problem, then one must choose At < Ax/e. This condition 
is now often called a stability condition, but Courant et al. did not take this 
point of view. They studied convergence. In the hyperbolic case, the necessity of 
the condition was derived by the comparison of the domains of dependence for 
the PAE and the PDE. If the condition is violated then they found that the 
solution of the PAE has no chance to be influenced by an interval of data, 
which the solution of the PDE is known to depend on. Hence there cannot be 
convergence for Cauchy problems with arbitrary initial data. 

As far as I know, before the computer age they did not write about the 
question "how is it possible that a consistent scheme for a well posed problem 
does not converge?". I- may be wrong. It can also be another example showing 
that much wisdom does not find its way to the printer. 

In 1936, however, Collatz [2] discussed some good and bad examples of finite 
difference approximation from the point of view of error propagation (in the l~o- 
norm). In 1947, yon Neumann and Goldstine, loc. cit. p. 1028, gave the 
f611owing interpretation : "That the stability of the strict problem need not imply 
that of an arbitrarily close approximant was made particularly clear by some 
important results Of R. Courant, K. Friedrichs and H. Lewy". Anyway, an 
answer to the question above was given in the equivalence theorem of Lax, 
presented in 1953 at a seminar at New York University (where Courant was the 
director of the Institute of Mathematical Sciences), [31], p. 39. I quote from 
[31], p. 44. 
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"Given a properly posed initial-value problem and a finite difference 
approximation to it that satisfies the consistency condition, stability is the 
necessary and sufficient condition for convergence". Here "stability" is defined 
as the uniform boundedness of an infinite set of difference operators 

(2.2) (C(At))", 0 < At  < 6, 0 < nAt  < T.  

Implicitly, the uniformity is also required with respect to the spatial increments 
Ax  i, i = 1,2 . . . . .  d, where d is the number of space dimensions, for relations 
Ax  i = 9i(At)  are assumed. 

The result and the proof of Courant, Friedrichs anti Lewy fascinated me. I 
became curious to see what happens, if the initial values are analytic. In this 
case the initial data are determined for all x by the values on an arbitrarily 
short interval, and the domain of dependence argument is not applicable. I 
found a much more liberal convergence condition, see [10], than Courant et al., 
but this is not of practical interest. I quote from [10], p. 100. "Since most 
functions of Applied Mathematics are at least piece-wise analytic, one might 
expect that the theorems just obtained would be more relevant to numerical 
practice than the negative results of Courant et al. This is, however, not the case 
(if the difference equation is used for recursive numerical computation. . . ) .  The 
reason is the presence of round-off errors, which behave very much like non- 
analyticities. In terms of Fourier analysis, the round-off introduces 'wave 
components '  ... which have a very rapid growth. Thus that circumstance which 
caused trouble for the proof of convergence under more general assumptions, 
gives rise to so-called numerical instability in a computation with finite 
differences." (I think I meant finite word length). Then I illustrated the error 
growth by a perturbation scheme, which I had learned from Collatz, and 
pointed out that "from the point of view of discrete Fourier analysis, as used by 
... von Neumann, O'Brien et al., Hyman and others ... the convergence ... 
when f ( x )  is an analytic non-periodic function ... appears as the result of a 
cancellation between different diverging components". Although [10] is outside 
the mainstream, both in the study of PAE ' s  for numerical use and in my career, 
I can still understand why it was fun to make this odd study, and I certainly 
learned a lot from it. 

Let me make a digression here. In [5], the lack of convergence (and hence the 
instability) was explained by a "physical" argument concerning domains of 
dependence for a P D E  and a consistent PAE.  There are similar applications of 
physical ideas in the more recent research on numerical instability, see Trefethen 
[37] and the literature quoted by him. Trefethen shows how the concept of 
group velocity can be applied to numerical phenomena in the solution of PAE's .  

There may be refraction effects at lines, where the grid size is changed, because 
in P A E - a p p r o x i m a t i o n s  to (2.1) the wave speed depends on the grid size and on 
the wave number. There may be reflection effects at artificial boundaries, which 
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sometimes have to be introduced because the computer cannot handle an infinite 
domain. Furthermore, instability may arise, when a PAE requires more 
boundary conditions than the PDE. Methods with this feature may have other 
advantages (high order of consistency), but they cannot be accepted unless the 
~unphysical" boundary conditions are handled in a stable way, see again [37]. 
The situation is not exactly the same in the example of Section 1, where the 
leap-frog method demands extra initial conditions instead of boundary 
conditions, but there are connections. 

The earliest development of numerical stability theory was connected with 
PDE's, while I shall here mainly discuss ODE's. There are, however, important 
relations between the problems. ODE's may, of course, be considered as a simple 
case of PDE's, where one does not have the extra difficulty of approximating 
uhbounded differential operators. On the other hand, many numerical schemes 
for PDE's can be interpreted or derived by a two stage process, sometimes 
called the method of lines. In the first stage, the PDE is replaced by an 
approximately equivalent huge system of ODE's, derived by a discretization in 
the space variables only, by means of finite differences or some Galerkin 
method. The dimension of the system as well as its Lipschitz constant grows 

without bounds, as the accuracy of the spatial discretization increases. In the 
second stage a general numerical method for ODE's is applied to this system. 

Ideas from the numerical solution of ODE's are therefore important for 
PDE's. Conversely, ideas from PDE's and their physical background may be 
useful for the design and analysis of numerical methods for ODE's, since they 
indicate difficulties which perhaps a general purpose program for ODE's should 
be able to resolve. There is, however, an important special difficulty with the 
method of lines, which is to be discussed at the end of this section. 

Crank and Nicolson 1947 [6] seem to have been the first to point out that it 
is advantageous to use an implicit method in order to obtain good stability 
properties. They consider heat conduction problems and suggest the trapezoidal 
method for the time integration, and compare it with the leap-frog method. 
They study the error propagation first by a perturbation scheme and then by a 
discrete Fourier analysis scheme, suggested to them by yon Neumann (via 
Hartree). While leap-frog runs wild already for arbitrarily small values of At/Ax, 
no restriction on this ratio is needed for the trapezoidal method. 

Laasonen [24] finds that the use of an implicit method is advantageous in the 
study of existence and uniqueness questions for parabolic problems, for 
essentially the same reason. 

In 1949 Fox and Goodwin [17] emphasize that the trapezoidal method 
is useful also for ODE's, when some components die out more !quickly 
than others. In a short section called "building up errors" they demonstrate this 
on a particular linear example, by comparing the closed form solutions of the 
ODE and the OAE for one particular step size, They are fairly brief there, since 
the central theme of their paper is not this, but to propose their new difference 
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correction technique. In modern terminology their example is a "moderately 
stiff" ODE system. 

In the same year (1949) Loud [27] studies the behavior of some methods on 
a linear system dy/dt = Ay,  where A is a constant diagonalizable matrix. By a 
similarity transformation, the study is reduced to the scalar equations 

(2.3) dy/dt = 2y, 2~ spectr(A), h2 = qE (7~ 

The solution of the corresponding difference equation is of the form, 

(2.4) y,  = blm ] + . . .  + bkm~, mi = mi(q). 

Here m~(q) is an approximation to expq The power series expansion of this 
root is used in an estimate of the global error. The 0ther m i tend to zero with q, 
for all methods but one. The metho~ts studied include the classical Runge-Kutta 
method and some multistep methods from a textbook. The exception is Milne- 
Simpson's method, about which he comments "that there is a second term, 
which does not tend to zero, and high p,owe/'~sof it may well become large. For 
this reason this method is not suitable for lbng-run automatic computation". He 
does not discuss this quantitatively, e.g. the coefficient - 1/3 which Rutishauser 
and I derived is not mentioned. Nor does he point out that the second term is 
disturbing only if Req < 0. Nevertheless, the techniques he uses are nowadays 
standard, and his opinions seem to be generally accepted today by the 
producers of general purpose software. 

I like to conclude this section by three comments about the opinions and 
techniques. 

I was for several years less categorical in my verdict of Milne-Simpson's 
method which is a 4th order accurate method and has a small error constant 
(1/180): ".. . ,  it is to be expected that 'some weakly unstable methods' are 
favorable if ~f/~.y > O, because of their small truncation error ... If Of/dy < 0 
then the ... weak instability • . may make them inferior to methods with a 
lower ~order of consistency' in integrations over a long range. In such cases 
Runge-Kutta's and Adams' methods are safer.", [12], p. 52. On p. 72 I report 
the results of an integration of a Bessel differential equation from t = 2 to 
t = 10 with h = 0.1. The error at the endpoint is 2 . 2 E-6 .  By a 6th order 
accurate weakly (un)stable 4-step method the error was less than 4 E - 9 .  I think 
it is still an open question how many branches we shall split "the general 
purpose" into. There may still be a market for the weakly (un)stable methods. 
In the fifties my neighborhood thought that I overemphasized the weak 
(in)stability. Now most people think that my verdict was not negative enough. 

It is customary to apply the study of the test equation (2.3) also to non-linear 
systems, where 2 runs through the spectra of the Jacobians for all t. Some 
questions about this generalizations will be discussed in Part II. 
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The reduction of the study of a linear system dy/dt = Ay  to the scalar 
equations (2.3) makes sense only if the transformation T, which diagonalizes A, 
has a condition number llTll" liT-11t of moderate size. This is important, for 
example, in discussions of the method of lines mentioned above. There one has 
to consider a sequence of systems, 

dy/dt = AmY, m =  1,2,3 . . . .  

The order of the system and the accuracy of the spatial discretization increase 
with m. It is not sufficient to consider the spectra of the matrices ,4 m, for the 
condition number of the diagonalising transformation may grow rapidly with m. 
The study of the test equation (2.3) may be misleading concerning restrictions 
on the choice of time step. The corresponding difficulty is well handled in the 
theory of PAE's,  where the discretization in space and time are simultaneously 
studied, but it is sometimes overlooked in the discussion of the method of lines. 
In 1959 Kreiss made a profound study of the uniform boundedness of exp(Amt) 
over all positive t and all matrices in a family of matrices of f i x e d  order, but in 
this case the order is unbounded. It is sometimes advantageous to study these 
matters in terms of norms instead of spectra (energy method or contractivity 
analysis, more about this in Part II). Similarity transformations, other than 

diagonalization, may also be useful. 

3. T h e  period 1 9 5 2 - 1 9 6 3 .  

I do not think that Rutishauser and I were aware of Loud's paper when we 
met in 1951. We were, however, aware of an article by Todd [36], where he 
exemplifies a stronger type of instability, which is not removed when the step 
size tends to zero. I decided to look into these phenomena for a class of 
methods for the integration of first order systems, now called linear multistep 
methods, where y, is intended to be an estimate of y(t,), t ,  = n .h ,  

n = 0 , 1 , 2  . . . .  : 

(3.1) 
k k 

~ff .+j  = h ~, f l j f(y.+s,t , ,+j).  
j = o  j = o  

This class contains many of the best known methods, such as the Adams 
methods, the backward differentiation methods, Euler's method, the leap-frog 
method and Milne-Simpson's method. 

Since we consider arbitrary systems of ODE's, the solution y(t) is an arbitrary 
(sufficiently regular) function. Introduce the generating polynomials ¢ and a, 

and the operator L h 

k k 

(3.2) 0 ( ( )  = E O~J ~j' (T(() : E ~J~J' 
j=O j = 0  



(3.3) 
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LhY(t ) = ~ otjy(t + j h ) -  h ~ fly'(t + jh). 
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Lny(t ) will be called the local truncation error. We say that the order of  
consisteno, is p, if p is the largest integer such that LhP(t ) vanishes identically 
for any pth degree polynomial. This requirement leads to p +  1 homogeneous 
linear equations for the 2k + 2 coefficients of the method. By the expansion of 
Lhy(t ) into powers of h, it is then seen that for an arbitrary function y, 

(3.4) Lhy(t) ~-- ch p+ ~y(P+ 1)(0, (h --* 0), 

where c and p are independent of the function y. Hence, for y ( t ) = e x p t  we 
obtain 

Q(exph)-ha(exph)  ~ ch p+I 

Set exph = (. Then h = log( ~ ( - 1 ,  and 

(3.5) e ( O / o ' ( O - l o g C  --- (c/~rO))" (C- l) "+', C ~ 1. 

An attractive feature of k-step methods is that the amount of work per step is 
comparatively small. If the method is explicit, i.e. if flk = 0, then only one 
evaluation of the function f is needed at each step. Some people are still of the 
opinion that k-step methods are basically unsound, for the following 
"philosophical" reason: "The future of the solution of (t.2) is uniquely 
determined by its value at one point. A sound approximate method should not 
be different from the underlying problem in such a fundamental respect." There 
is a point in this remark. Due to this fundamental difference, one has to 
consider the question of numerical stability, also for arbitrarily small values of 
hllf'(Y)ll. Since a fairly large number of multistep methods satisfy most 
reasonable requirements of stability, I do not see any "philosophical reasons" 
for discarding the whole class. 

We follow Loud's example and consider the linear test problem, 

dy/dt = 2y, h2 = q = complex constant. 

When it makes sense we also include the the limiting case q = oo. 
The set of complex numbers q, for which all solutions of the difference 

equation obtained when a numerical method is applied to this linear test 
problem, is called the stability region S (or the region of absolute stability) of 
the method. A method is called zero-stable iff 0 e S. These definitions apply to 
any numerical method for the solution of initial value problems for ODE's. 

The concept of stability region did not become a hit until the beginning of the 
60's, but as early as 1954 Gray [18] published diagrams related to stability 
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regions in this sense. They contain, however, much more information than the 
plots of stability regions usually seen today and were perhaps too complicted to 
become popular. 

We now return to the linear multistep methods and the linear test problem. 
The difference equation (3.1) then becomes linear, and the general solution is 
given by (2.4), where the m i are roots of the characteristic equation, 

(3.6) Q(~)-qa(ff) = 0, 

provided that the roots are simple. (See e.g. [19], p. 214 concerning the case of 
multiple roots). The method is zero-stable iff the characteristic equation 
satisfies the following root condition: no root should lie outside the unit circle, 
a n d  the roots on the unit circle should be simple. 

In 1956 I published a proof of the following convergence theorem [11]: 
Consider all ODE problems of the form (1.2), which have a unique solution on a 
finite interval, such that f satisfies a Lipschitz condition in a vicinity of that 
solution. Then, for a consistent method zero-stability is necessary and sufficient 
for the uniform convergence of the solution of OAE (3.1) to the solution of the 
ODE (1.2), when h and the errors of the initial values tend to zero. 

As in many other places I here modernized the terminology. The parallel to 
the equivalence theorem of Lax then becomes clearer. When I wrote [ t l ] ,  I was 
not yet familiar with the work of Lax, which was not published until 1955 [25], 
although it had been presented at a seminar in 1953. Had I known it, it is likely 
that I had changed my terminology. The terminology I use today is to a large 
extent due to Henrici [19], who did very much for the further development and 
the publicity of the theory of multistep methods. 

Let us look more at-the parallel development in PDE's. The convergence 
theorem for linear multistep methods showed, roughly speaking, that if a 
method handles the trivial equation dy/dt = 0 with arbitrary initial values well, 
then it will also handle the equation dy/dt = f ( t , y )  well, if f is Lipschitz- 
bounded. In 1962 Kreiss obtained an analogous result for PAE's, which we 
quote from [32], p. 58. 

"If the difference system 

u, + 1 = C(At)u, 

is stable, and Q(At) is a bounded family of operators, then the difference system 

u.+ ~ = (C(~ t )+  AtQ(~t))u.  

is also stable." On this occasion it is appropriate to mention that this was 
published in BIT [23]. The article also contained the fundamental matrix 
theorem of  Kreiss off necessary and sufficient conditions for the uniform power- 
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boundedness of a family of matrices (of fixed order). This discrete version of the 
theorem in [22] is a powerful tool to the stability analysis for difference 
methods for partial differential equations, see e.g. [32], Ch. 4. 

Another aspect of linear multistep methods intrigued me, however, more than 
the convergence theorem. By (3.5) the order of consistency is related to the 
asymptotic behavior of Q( ( ) / a ( ( ) - log (  as (-- ,  1, while the zero-stability is 
related to the location of the zeros of Q((). This reminded me of analytic number 
theory, where number-theoretical results are deduced by the application of 
complex analysis to certain generating functions of various arithmetical 
functions. A central problem is to deduce knowledge about the zeros of 
Riemann's zeta-function from asymptotic properties of the function. I had been 
an enthusiastic student of this beautiful theory, but after one publication [9] 
and great hesitation I had decided to abandon it, since all the remaining 
interesting problems seemed too difficult for me. So I now thought:  perhaps 
numerical analysis is not only fresh but also fun! When I played around a little 
and found that the "most consistent" methods for k = 3 and k = 4 were not 
zero-stable, then I became a life-time addict to Numerical Analysis. 

After some time I was able to express the conflict between consistency and 
stability for linear multistep methods in the following way [11]: although the 
2k + 2 coefficients of a linear k-step method can be chosen so that p = 2k, zero- 
stability implies that ,p < 2Lk/2J + 2. For an explicit zero-stable method, p < k. 

Later [12] I found that if p = k+2 ,  then the method is weakly stable in the 
sense that the difference equation obtained, when the method is applied to (2.3), 
may have an exponential growth of the type illustrated above for the leap-frog 
and the Milne-Simpson methods, even if Re q < 0. 

The proof of the convergence theorem mentioned above also provided a 
bound for the global error, of the following form, where M is the Lipschitz 
constant L multiplied by a factor that depends on the method, and l' is a bound 
for the sum of the norms of the initial errors and all the local errors until t = t,. 

Ily~- y(t,)ll ~- l'K exp(Mt,), 

which was characterized as "in general rather poor". The contribution of the 
local truncation errors to l' does not exceed 

• ch p+ ltjy~_+11)ll ~ ct~hPmaxllY (p+ 1~II 
V=I 

which shows that for a zero-stable method the order of consistency is also the 
order of accuracy. 

Error bounds of this type existed in the pre-computer literature. Collatz [2] 
quotes some of them. Sometimes the bound is expressed as follows, where I is an 
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upper bound for the local truncation error. 

(3.7) IIY,-Y(t,)[[ < l ( e x p ( M t , ) -  1)/(Mh). 

Such bounds can easily become ridiculous over-estimates. For example, let 
M = L, t = 10, f ( y )  = Ay, where A is diagonalizable with all eigenvalues in the 
interval ( - 5 , 0 ) .  Then exp(Mt) > exp 50 > 1021. If Euler's method is used with 
h < 0.3 (say) then the actual error will not exceed a constant of moderate size 
times h. 

One way to improve this is by replacing the Lipschitz constant by an upper 
bound of the logarithmic norm of the Jacobian. Let IIAII be the operator norm 
of the matrix A induced by the vector norm 11" II, 

Itall = sup llAxll/llxll. 
X 

The logarithmic norm of the matrix B is then defined as follows, 

III + hntl - 1 
(3.8) /~(B) = lim 

h ~ o +  h 

This concept was introduced in 1958 independently by Lozinskii [28] and 
Dahlquist [I 1]. Lozinskii applied it to obtain realistic error bounds for Adams' 
methods, while I applied it to weakly stable multistep methods. For  related 
ideas, see also [16] and [39]. 

The improvement will be briefly illustrated by an application to Euler's 
method. I here partly follow Henrici [20], p. 107. Euler's method reads 

Y . + I - Y .  = hf(Yn). 

Let the local truncation error at t = t. be lO., where 0. is a vector whose norm 
does not exceed 1. Then 

Y(tn + 1 )-- y(t .)  = hf(y( tn)  ) + IO.. 

Set 

e. = y.:-y(tn),  J .  = f ~ f ' ( y ( t + v e . ) ) d v .  

Even if J ,  depends on e,, it follows that 

(3.9) e , + l - e  . = h J . e , - l O ,  and l le .+l l l f - l l !+hJ.I l t le . t l+l .  

Let 1 +h#(J ,h )  be an upper bound of l l I+hJ , I  I. When h ---* 0, #(J, h) tends to an 



33 YEARS OF NUMERICAL INSTABILITY, PART I 201 

upper bound /~ of the logarithmic norm of the Jacobian. For example, if i1"11 is 
an inner-product norm, it can be shown that 

(3.10) III + h J ,  II ~ exp(hp(J.)+ IIhJ,II2/2). 

Then (3.9) yields, by induction, a bound jbr Ile.II of the same structure as (3.7), 
where M is replaced by #(J, h), which is never larger than the Lipschitz constant 
and may even be neyative. Note, for example, that if B = zl,  then /~(B) = Rez, 
while IIBII = Izl. The efficiency of the estimate depends on the choice of norm, 
see e.g. Str6m [35]. 

If #(J, h) < 0 we obtain a uniform bound, i.e. for all n, 

(3.1t) l lY , -  y(t,)ll <= l/Ih~(J, h )[ <= (h/2 ) maxllS;ll/I,(J, h)l. 
t < t  n 

For inner-product norms this bound by (3.10), is valid when 

I~(S.) < O, IlhS.II z < 12h/~(J.)l 

for all n. This condition is sharp in the sense that for the linear test problem, i.e. 
if hJ = q, this is exactly the inequality which defines the stability region for 
Euler's method. Similar bounds and conditions can be derived for any consistent 
linear multistep method that is strongly zero-stable (i.e. all zeros of ~(~) except 1, 
are strictly inside the unit circle) and for which flk/~k > 0, see [42], Lemma 2.3 
and Theorem 3.3. 

A particularly powerful result, essentially due to Desoer and Haneda [14] can 
be obtained for the implicit (or backward) Euler method, 

Y . + I - Y .  = hf(Y.+l) .  

As before, let/~ be an upper bound of the logarithmic norm of the Jacobian. If 
/~h < 1 the following bound holds in any norm, 

(3.12) Ile,+lll ~ ( 1 - h ~ ) - l l l e . l l + l l l ( l - h J , ) - l O ,  II. 

As above, lO, is the local truncation error, It0.11 ~ 1. 
A bound for lfe.ll is easily obtained from this. If/~ < 0 it becomes particularly 

simple. Then the bound 

(3.13) tte, It = r'/IhP~l, 

holds for any n, if it is true for n --- 0. Here I" is an upper bound for the second 
term on the right hand side of (3.12). Note that ~/~ < 0, these bounds hold for 
any step size h! The results are also easy to generalize to variable step size. 
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Error bounds, valid without any stability restriction for the step size, exist 
also for some other methods, though not for arbitrary norms. A necessary 
condition on the method for the possibility of such bounds is obtained from the 
linear test problem. A somewhat weaker result for the trapezoidal method was 
obtained by me in 1963 and published in BIT [13], but now we have entered 
the stiff epoch, which belongs to Part II. 

I regard bounds like (3.7) with their inadequate use of the Lipschitz constant 
L (or the related paremeter M) as typical for some pre-computer age theory of 
numerical methods. The bounds do not distinguish between well- and ill- 
conditioned initial value ODE problems. They are also unable to distinguish 
between methods, which can handle problems which are well-conditioned even 
if Lt is large ("stiff' or "moderately stiff" problems), with reasonably large step 
sizes (more about them in Part II), and methods (e.g. leap-frog), which cannot 
do so. 

There is a parallel in numerical linear algebra. In 1943 Hotelling had 
observed that errors in the input to a step of the Dootittle variant of elimination 
can be amplified by a factor 4 in the step, see [21], p. 7. He concluded that for a 
linear system with p unknowns an estimated limit of the error amplification is 
4 p -  1. "The rapidity with which this increases with p is a caution against relying 
on the results of the Dootittle method or other similar elimination methods with 
any moderate number of decimal places when the number of equations and 
unknowns is at all large." About 1950 this misconception seemed to be widely 
spread. We have, after the work of Wilkinson and others, a better framework of 
concepts for discussing such matters, so that statements with more nuances can 
be made. 

There were not many full time numerical analysts between Chebyshev (say) 
and the computer age. The development of numerical methods was to a large 
extent in the hands of scientists, engineers and mathematicians, some of whom 
were very prominent in their special fields, and also imaginative in the design of 
methods, but they rarely had the patience to develop the appropriate 
distinctions. For example, Hotelling was a prominent statistician, and [21] 
contains ideas which were new and interesting at the time. 

There has been a great progress in numerical analysis during the last decades. 
Yet I do not think that its language is fully developed even today. There are 
gaps between the mathematician's and the numerical analyst's attitude to 
asymptotic formulas and to words like "bounded", "'sufficiently small", 
"convergence" etc. Take the example mentioned above. If Mt is bounded then 
exp(Mt) is so too, in the language of Pure Mathematics. When it comes to 
numerical work, then 50 is not very large, but it does not sound right to use the 
word "bounded" in connection with exp(50). 

Bounds analogous to (3.7) are useful for proving that the solution of an ODE 

depends continuously on initial values and parameters, and this is at times 
valuable knowledge also for a numerical analyst. For numerical estimation the 



33 YEARS OF NUMERICAL INSTABILITY, PART I 203 

b o u n d s  a r e  useless. F o r  s o m e  t ime  p e o p l e  seemed  to  bel ieve tha t  there  m u s t  be 

such a gap  be tween  r i g o r o u s  b o u n d s  and  ac tua l  e r rors .  Whi l e  the  pu re  

m a t h e m a t i c i a n  d iscusses  "wel l  p o s e d "  a n d  "ill  p o s e d "  p r o b l e m s  as b ina ry  

a l te rna t ives ,  the  n u m e r i c a l  ana lys t  has  a c o n t i n u o u s  scale of  m o r e  o r  less "wel l -  

o r  i l l - c o n d i t i o n e d "  p rob lems .  I bel ieve tha t  we need  m o r e  t r a n s f o r m a t i o n s  of  

this  k ind  of  the  p u r e  m a t h e m a t i c i a n ' s  t e r m i n o l o g y .  
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